Directly Instructing Adolescents in Metacognition Enhances Science Learning and Motivation: An In-Vivo Study
Cristina Zepeida, J. Elizabeth Richey, Paul Ronevich, and Timothy J. Nokes-Malach
Learning Research and Development Center, University of Pittsburgh*
Pittsburgh Science and Technology Academy†

Introduction
• Metacognition is knowledge and cognition about cognitive phenomena, including monitoring and regulation (Flavell, 1979)
• It has been positively associated with learning, academic performance, and motivation (Hacker et. al, 2000)

Hypotheses
• Explicit instruction of metacognition will:
 • Improve the accuracy of student’s metacognitive judgments
 • Increase student motivation
 • Increase student performance on scientific reasoning and transfer tasks
 • Allow students to overcome misconceptions

Methods
• Participants: 46 urban middle school 8th grade science students
• Between-subjects classroom design
• All materials were distributed as an in-class activity

Targeted Metacognitive Skills

Planning
- Definition: Understanding the problem, identifying the goal, and strategizing to create a plan
- Practice: Before starting to solve a problem, students write down how they planned to solve the problem

Monitoring
- Definition: Thinking about where one is on the path to solving the problem in order to monitor progress toward the goal
- Practice: While problem solving, they stop to check their progress, looking for any errors

Evaluation
- Definition: Comparing the answer to the problem’s goal, and looking to see which strategies worked to best evaluate the solution
- Practice: After they solved the problem, they checked their solution to make sure it made sense

Acknowledgements
We would like to thank the Pittsburgh Science of Learning Center for supporting this project and David Klahr and Stephanie Siler for sharing their CVS materials.

References