Recognizing and Measuring Self-Regulated Learning in a Mobile Learning Environment
Li Sha, LRDC, University of Pittsburgh

Introduction
Realizing ubiquity as the defining feature of mobile learning, this study conceptually and empirically explores how the theories and methodologies of self-regulated learning (SRL) can help us analyze and understand the processes of mobile learning. Self-regulated learning is composed of cognition, motivation, metacognition, and behavior.

There were three research questions:
1. What are the relations between SRL in mobile learning and their perceived parental autonomy support for mobile learning?
2. How are students’ SRL and perceived parental autonomy support associated with their engagement in mobile learning activities?
3. How are students’ SRL, parental autonomy support, and engagement associated with their achievements in science learning?

Method
Location: Two Grade 4 science classes in Singapore
Time: July – August, 2010 (5 weeks)
Valid Participants: 67 (38 boys, 29 girls)

Mobile device: Smartphone HTC TyTn II (Taiwan, ROC)
Components: A calculator, a calendar, Internet access, MS Word, Excel, and PowerPoint

Cognitive & metacognitive tools: Sketchy for drawing animation, iKWL for creating KWL tables, FisicaMap for concept maps, MyProjects for organizing activities

Items (5-point) Examples
Self-efficacy: I’m confident I can understand the most difficult concepts of magnet (6 items, α=.80)
Intrinsic motivation: Even when completing the assignments does not guarantee that I get a good grade, I still love to complete them (6 items, α=.74).
Extrinsic motivation: Getting a good exam score on the concepts of magnet is the most satisfying thing for me right now (6 items, α=.72).
Regulation of learning: I will normally ask myself questions to make sure I understand the concepts of magnet (6 items, α=.72).
Parental autonomy support: My parents let me make my own plans for I want to do when I work together with them on the smartphone (7 items, α=.78).

Outcome variables:
• A continuous variable (Engagement_KWL) was defined to measure the degree to which individuals engaged in the KWL table.
• A binary variable was defined to measure whether or not individuals engaged in filling up the KWL table.
• The achievement score is the test score on the magnet that was taught in the five week.

Results

<table>
<thead>
<tr>
<th>Predictor</th>
<th>SE</th>
<th>IM</th>
<th>EM</th>
<th>RL</th>
<th>AS</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-efficacy</td>
<td>0.63</td>
<td>0.43</td>
<td>0.29</td>
<td>0.37</td>
<td>0.43</td>
<td>0.75</td>
</tr>
<tr>
<td>Intrinsic motivation</td>
<td>0.40</td>
<td>0.53</td>
<td>0.23</td>
<td>0.37</td>
<td>0.23</td>
<td>0.37</td>
</tr>
<tr>
<td>Extrinsic motivation</td>
<td>7.64</td>
<td>0.01</td>
<td>0.81</td>
<td>0.31</td>
<td>0.01</td>
<td>2.24</td>
</tr>
<tr>
<td>Regulation</td>
<td>0.01</td>
<td>0.93</td>
<td>0.03</td>
<td>0.29</td>
<td>0.97</td>
<td>0.97</td>
</tr>
<tr>
<td>Autonomy support</td>
<td>5.16</td>
<td>0.02</td>
<td>0.88</td>
<td>0.42</td>
<td>0.04</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Conclusions
1. Student motivation can account for whether and to what degree the students can actively engage in mobile learning activities (i.e., KWL in this case) metacognitively, motivationally, and behaviorally.
2. The effect of students’ self-reported motivation on their learning achievement is mediated by their engagement in answering the KWL questions.
3. Students’ perception of parental autonomy support is not only associated with their motivation in school learning, but is also associated with their actual behaviors in self-regulating their learning.

Acknowledgment & Reference
This study is funded by a grant from the National Research Foundation, Singapore (Grant #: NRF2007IDMIDM005-021). I appreciate my co-workers: Chee-Kit Looi, Wenli Chen, Peter Seow, and Lung Hsiang Wong